Create and Store output in hive table of JSON data
Using hive
-- Create the target table CREATE TABLE combined_json_table ( id INT, column1 STRING, column2 INT, json_data STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; -- Insert the data into the target table INSERT INTO TABLE combined_json_table SELECT id, column1, column2, CONCAT( '{', CONCAT( '"column1": "', column1, '",', '"column2": ', column2, ) ) AS json_data FROM your_table;
Here’s an example in PySpark:
from pyspark.sql import SparkSession from pyspark.sql.functions import to_json, struct # Create SparkSession spark = SparkSession.builder \ .appName("ColumnToJson") \ .getOrCreate() # Read data from Hive table hive_table = spark.table("your_table") # Convert columns to JSON format json_data = hive_table.select(to_json(struct(hive_table.columns)).alias("json_data")) # Save JSON data to a file output_path = "/path/to/output.json" json_data.write.json(output_path) # Stop SparkSession spark.stop()
Store multiple table outputs in one json table
-- Create the target JSON table CREATE TABLE combined_json_table ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe' STORED AS TEXTFILE AS SELECT NULL AS id, NULL AS json_data; -- Insert data from table1 INSERT INTO TABLE combined_json_table SELECT 1, concat('{', '"column1": "', column1, '", "column2": "', column2, '", ... }') AS json_data FROM table1; -- Insert data from table2 INSERT INTO TABLE combined_json_table SELECT 2, concat('{', '"column1": "', column1, '", "column2": "', column2, '", ... }') AS json_data FROM table2; -- Insert data from table3 INSERT INTO TABLE combined_json_table SELECT 3, concat('{', '"column1": "', column1, '", "column2": "', column2, '", ... }') AS json_data FROM table3;
Using spark to combine tables
from pyspark.sql import SparkSession from pyspark.sql.functions import concat, lit, to_json # Create SparkSession spark = SparkSession.builder \ .appName("CombineTablesToJson") \ .getOrCreate() # Read data from table1 table1 = spark.table("table1") # Read data from table2 table2 = spark.table("table2") # Read data from table3 table3 = spark.table("table3") # Select JSON columns and convert to JSON json_columns_table1 = [col for col in table1.columns if col.startswith("json_")] json_data_table1 = table1.select(concat(lit("table1"), to_json(table1[json_columns_table1])).alias("json_data")) json_columns_table2 = [col for col in table2.columns if col.startswith("json_")] json_data_table2 = table2.select(concat(lit("table2"), to_json(table2[json_columns_table2])).alias("json_data")) json_columns_table3 = [col for col in table3.columns if col.startswith("json_")] json_data_table3 = table3.select(concat(lit("table3"), to_json(table3[json_columns_table3])).alias("json_data")) # Select non-JSON columns non_json_columns_table1 = [col for col in table1.columns if col not in json_columns_table1] non_json_data_table1 = table1.select(non_json_columns_table1) non_json_columns_table2 = [col for col in table2.columns if col not in json_columns_table2] non_json_data_table2 = table2.select(non_json_columns_table2) non_json_columns_table3 = [col for col in table3.columns if col not in json_columns_table3] non_json_data_table3 = table3.select(non_json_columns_table3) # Union JSON and non-JSON columns combined_data = json_data_table1.union(non_json_data_table1) \ .union(json_data_table2).union(non_json_data_table2) \ .union(json_data_table3).union(non_json_data_table3) # Write JSON data to a file output_path = "/path/to/output.json" combined_data.write.json(output_path) # Stop SparkSession spark.stop()
import org.apache.spark.sql.{SparkSession, DataFrame} import org.apache.spark.sql.functions._ val spark = SparkSession.builder() .appName("HiveTableWithJsonColumn") .enableHiveSupport() .getOrCreate() val hiveTableDF = spark.table("your_existing_hive_table_name") val selectedColumns = hiveTableDF.select("column1", "column2", "column3") val jsonDF = selectedColumns.withColumn("json", to_json(struct(selectedColumns.columns.map(col): _*))) val newTableDF = hiveTableDF.select("existing_column1", "existing_column2", "existing_column3") .join(jsonDF, Seq("common_column")) newTableDF.write .mode("overwrite") // Specify the write mode as per your requirement .saveAsTable("your_new_hive_table_name")
import org.apache.spark.sql.{SparkSession, DataFrame} import org.apache.spark.sql.functions._ val spark = SparkSession.builder() .appName("HiveTableWithJsonColumn") .enableHiveSupport() .getOrCreate() val hiveTableDF = spark.table("your_existing_hive_table_name") val selectedColumns = hiveTableDF.select("column1", "column2", "column3") val jsonDF = selectedColumns.withColumn("json", to_json(struct(selectedColumns.columns.map(col): _*))) val tableWithJsonColumnDF = hiveTableDF.withColumn("json", jsonDF("json")) tableWithJsonColumnDF.write .mode("overwrite") // Specify the write mode as per your requirement .saveAsTable("your_new_hive_table_name")