Convert your hive output to Json format
- Using CONCAT and string manipulation functions:
SELECT CONCAT('{ "column1": "', column1, '", "column2": "', column2, '", "column3": "', column3, '" }') AS json_data FROM your_table;
- Using a custom UDF (User-Defined Function): If the built-in functions in Hive do not provide the required functionality, you can create a custom UDF to convert the data to JSON format. Here’s an example using Java:
import org.apache.hadoop.hive.ql.exec.UDF; import com.google.gson.Gson; public class ToJsonUDF extends UDF { public String evaluate(Object input) { Gson gson = new Gson(); return gson.toJson(input); } }
3. using spark
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder() .appName("HiveToJson") .enableHiveSupport() .getOrCreate() // Read the data from Hive into a DataFrame val df = spark.sql("SELECT * FROM your_table") // Convert the DataFrame to JSON format val jsonDF = df.toJSON // Show the JSON data jsonDF.show(false)
4. Using Spark SQL
import org.apache.spark.sql.{SparkSession, functions} val spark = SparkSession.builder() .appName("ColumnToJson") .getOrCreate() // Read the data from Hive into a DataFrame val df = spark.sql("SELECT column_name FROM your_table") // Convert the column to JSON format val jsonDF = df.select(functions.to_json(functions.col("column_name")).alias("json_data")) // Show the JSON data jsonDF.show(false)
- Using Hive Scripting: Hive provides a scripting interface that allows you to execute scripts written in scripting languages like Python or Bash. You can leverage this feature to write a script that fetches data from Hive and converts it to JSON format.
import subprocess import json # Execute Hive query and fetch the result as a string hive_query = "SELECT * FROM your_table" hive_output = subprocess.check_output(["hive", "-e", hive_query]).decode("utf-8") # Process the Hive output and convert it to JSON format hive_result = [line.split("\t") for line in hive_output.strip().split("\n")] column_names = hive_result[0] json_data = [dict(zip(column_names, row)) for row in hive_result[1:]] # Convert the JSON data to a JSON string json_string = json.dumps(json_data) # Print or write the JSON string to a file as needed print(json_string)
6: Using Hive Scripting with Batch Processing
#!/bin/bash # Define the Hive query to fetch the data in batches HIVE_QUERY="SELECT * FROM your_hive_table LIMIT 1000000" # Fetch data in batches and convert to JSON BATCH_SIZE=100000 OFFSET=0 TOTAL_RECORDS=$(hive -e "SELECT COUNT(*) FROM your_hive_table") while [ $OFFSET -lt $TOTAL_RECORDS ]; do BATCH_QUERY="$HIVE_QUERY OFFSET $OFFSET LIMIT $BATCH_SIZE" OUTPUT_FILE="output_$OFFSET.json" # Execute Hive query and convert to JSON using custom script or UDFs hive -e "$BATCH_QUERY" | python convert_to_json.py > $OUTPUT_FILE # Increment offset for the next batch OFFSET=$((OFFSET + BATCH_SIZE)) done
INSERT OVERWRITE LOCAL DIRECTORY '/path/to/output' ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' SELECT concat('{', '"column1": "', get_json_object(to_json(named_struct("column1", column1))), '",', '"column2": "', get_json_object(to_json(named_struct("column2", column2))), '",', ... '"columnN": "', get_json_object(to_json(named_struct("columnN", columnN))), '"', '}' ) AS json_data FROM your_table;
PySpark code snippet that converts Hive table output to JSON format
from pyspark.sql import SparkSession # Create SparkSession spark = SparkSession.builder \ .appName("HiveToJSON") \ .enableHiveSupport() \ .getOrCreate() # Read data from Hive table hive_table = spark.table("your_table") # Convert DataFrame to JSON format json_data = hive_table.toJSON() # Save JSON data to a file output_path = "/path/to/output.json" json_data.write.text(output_path) # Stop SparkSession spark.stop()
INSERT OVERWRITE LOCAL DIRECTORY '/path/to/output' ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' SELECT CONCAT( '{', CONCAT_WS( ',', CONCAT('"column1": "', column1, '"'), CONCAT('"column2": "', column2, '"'), ... CONCAT('"columnN": "', columnN, '"') ), '}' ) AS json_data FROM your_table;
import org.apache.spark.sql.{SparkSession, DataFrame} import org.apache.spark.sql.functions._ val spark = SparkSession.builder() .appName("SelectColumnsWithJson") .enableHiveSupport() .getOrCreate() val hiveTableDF = spark.table("your_hive_table_name") // Select some columns as normal columns and some columns as JSON format val resultDF = hiveTableDF.select( col("column1"), col("column2"), col("column3"), to_json(struct(col("column4"))).alias("json_column1"), to_json(struct(col("column5"), col("column6"), col("column7"))).alias("json_column2") ) // Show or save the resulting DataFrame as per your requirement resultDF.show()